Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.188
Filtrar
1.
PLoS Pathog ; 20(4): e1012087, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557815

RESUMO

Prion diseases uniquely manifest in three distinct forms: inherited, sporadic, and infectious. Wild-type prions are responsible for the sporadic and infectious versions, while mutant prions cause inherited variants like fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). Although some drugs can prolong prion incubation times up to four-fold in rodent models of infectious prion diseases, no effective treatments for FFI and fCJD have been found. In this study, we evaluated the efficacy of various anti-prion drugs on newly-developed knock-in mouse models for FFI and fCJD. These models express bank vole prion protein (PrP) with the pathogenic D178N and E200K mutations. We applied various drug regimens known to be highly effective against wild-type prions in vivo as well as a brain-penetrant compound that inhibits mutant PrPSc propagation in vitro. None of the regimens tested (Anle138b, IND24, Anle138b + IND24, cellulose ether, and PSCMA) significantly extended disease-free survival or prevented mutant PrPSc accumulation in either knock-in mouse model, despite their ability to induce strain adaptation of mutant prions. Our results show that anti-prion drugs originally developed to treat infectious prion diseases do not necessarily work for inherited prion diseases, and that the recombinant sPMCA is not a reliable platform for identifying compounds that target mutant prions. This work underscores the need to develop therapies and validate screening assays specifically for mutant prions, as well as anti-prion strategies that are not strain-dependent.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Animais , Camundongos , Príons/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Síndrome de Creutzfeldt-Jakob/tratamento farmacológico , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Encéfalo/patologia , Arvicolinae/metabolismo
2.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570188

RESUMO

Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.


Assuntos
Proteínas Priônicas , Príons , Proteínas Priônicas/metabolismo , Proteína com Valosina/metabolismo , Adenosina Trifosfatases/metabolismo , Proteostase , Ubiquitina/metabolismo , Príons/metabolismo
3.
Prion ; 18(1): 40-53, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38627365

RESUMO

Prion disease is an infectious and fatal neurodegenerative disease. Western blotting (WB)-based identification of proteinase K (PK)-resistant prion protein (PrPres) is considered a definitive diagnosis of prion diseases. In this study, we aimed to detect PrPres using formalin-fixed paraffin-embedded (FFPE) specimens from cases of sporadic Creutzfeldt-Jakob disease (sCJD), Gerstmann-Sträussler-Scheinker disease (GSS), glycosylphosphatidylinositol-anchorless prion disease (GPIALP), and V180I CJD. FFPE samples were prepared after formic acid treatment to inactivate infectivity. After deparaffinization, PK digestion was performed, and the protein was extracted. In sCJD, a pronounced PrPres signal was observed, with antibodies specific for type 1 and type 2 PrPres exhibited a strong or weak signals depending on the case. Histological examination of serial sections revealed that the histological changes were compatible with the biochemical characteristics. In GSS and GPIALP, prion protein core-specific antibodies presented as PrPres bands at 8-9 kDa and smear bands, respectively. However, an antibody specific for the C-terminus presented as smears in GSS, with no PrPres detected in GPIALP. It was difficult to detect PrPres in V180I CJD. Collectively, our findings demonstrate the possibility of detecting PrPres in FFPE and classifying the prion disease types. This approach facilitates histopathological and biochemical evaluation in the same sample and is safe owing to the inactivation of infectivity. Therefore, it may be valuable for the diagnosis and research of prion diseases.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doença de Gerstmann-Straussler-Scheinker , Doenças Neurodegenerativas , Doenças Priônicas , Príons , Humanos , Proteínas Priônicas , Proteínas PrPSc/metabolismo , Inclusão em Parafina , Doenças Priônicas/diagnóstico , Doenças Priônicas/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Príons/metabolismo , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Endopeptidase K , Anticorpos , Formaldeído
4.
Prion ; 18(1): 68-71, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38651736

RESUMO

The history of human prion diseases began with the original description, by Hans Gerhard Creutzfeldt and by Alfons Maria Jakob, of patients with a severe brain disease that included speech abnormalities, confusion, and myoclonus, in a disease that was then named Creutzfeldt Jakob disease (CJD). Later, in Papua New Guinea, a disease characterized by trembling was identified, and given the name "Kuru". Neuropathological examination of the brains from CJD and Kuru patients, and of brains of sheep with scrapie disease revealed significant similarities and suggested a possible common mode of infection that, at the time, was thought to derive from an unknown virus that caused slow infections. John Stanley Griffith hypothesized that the agent causing these diseases was "probably a protein without nucleic acid" and, in 1982, Stanley Prusiner reported the identification of a proteinaceous infectious particle (coining the term prion) that was resistant to inactivation methods that were at the time standard for nucleic acids, and identified PrP as the major protein component of the infectious agent in scrapie and in Creutzfeldt-Jakob disease, classifying this also as a prion disease. Interestingly, the prion concept had been previously expanded to yeast proteins capable of replicating their conformation, seeding their own aggregation and transmitting phenotypic information. The prion concept has been more recently expanded to refer to misfolded proteins that are capable of converting a normal form of a protein into an abnormal form. The quest to understand and treat prion diseases has united a specific research community around the topic, and regular meetings (Prion Meetings) have taken place over the years to enable discussions, train junior researchers, and inspire research in the field.


Assuntos
Doenças Priônicas , Príons , Humanos , Doenças Priônicas/patologia , Doenças Priônicas/metabolismo , Animais , Príons/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Kuru/patologia
5.
Proc Natl Acad Sci U S A ; 121(15): e2320456121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568974

RESUMO

Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high ß-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting ß-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naive 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.


Assuntos
Príons , Tauopatias , Humanos , Proteínas tau/metabolismo , Tauopatias/metabolismo , Isoformas de Proteínas/metabolismo , Príons/metabolismo , Peptídeos , Aminoácidos
6.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474214

RESUMO

Mood disorders are highly prevalent and heterogenous mental illnesses with devastating rates of mortality and treatment resistance. The molecular basis of those conditions involves complex interplay between genetic and environmental factors. Currently, there are no objective procedures for diagnosis, prognosis and personalization of patients' treatment. There is an urgent need to search for novel molecular targets for biomarkers in mood disorders. Cellular prion protein (PrPc) is infamous for its potential to convert its insoluble form, leading to neurodegeneration in Creutzfeldt-Jacob disease. Meanwhile, in its physiological state, PrPc presents neuroprotective features and regulates neurotransmission and synaptic plasticity. The aim of this study is to integrate the available knowledge about molecular mechanisms underlying the impact of PrPc on the pathophysiology of mood disorders. Our review indicates an important role of this protein in regulation of cognitive functions, emotions, sleep and biological rhythms, and its deficiency results in depressive-like behavior and cognitive impairment. PrPc plays a neuroprotective role against excitotoxicity, oxidative stress and inflammation, the main pathophysiological events in the course of mood disorders. Research indicates that PrPc may be a promising biomarker of cognitive decline. There is an urgent need of human studies to elucidate its potential utility in clinical practice.


Assuntos
Síndrome de Creutzfeldt-Jakob , Proteínas PrPC , Príons , Humanos , Síndrome de Creutzfeldt-Jakob/metabolismo , Transtornos do Humor , Plasticidade Neuronal , Príons/metabolismo , Transmissão Sináptica
7.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542372

RESUMO

The Rnq1 protein is one of the best-studied yeast prions. It has a large potentially prionogenic C-terminal region of about 250 residues. However, a previous study indicated that only 40 C-terminal residues form a prion structure. Here, we mapped the actual and potential prion structures formed by Rnq1 and its variants truncated from the C-terminus in two [RNQ+] strains using partial proteinase K digestion. The location of these structures differed in most cases from previous predictions by several computer algorithms. Some aggregation patterns observed microscopically for the Rnq1 hybrid proteins differed significantly from those previously observed for Sup35 prion aggregates. The transfer of a prion from the full-sized Rnq1 to its truncated versions caused substantial alteration of prion structures. In contrast to the Sup35 and Swi1, the terminal prionogenic region of 72 residues was not able to efficiently co-aggregate with the full-sized Rnq1 prion. GFP fusion to the Rnq1 C-terminus blocked formation of the prion structure at the Rnq1 C-terminus. Thus, the Rnq1-GFP fusion mostly used in previous studies cannot be considered a faithful tool for studying Rnq1 prion properties.


Assuntos
Príons , Proteínas de Saccharomyces cerevisiae , Príons/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Biomolecules ; 14(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540703

RESUMO

Glycosylation, a prevalent post-translational modification, plays a pivotal role in regulating intricate cellular processes by covalently attaching glycans to macromolecules. Dysregulated glycosylation is linked to a spectrum of diseases, encompassing cancer, neurodegenerative disorders, congenital disorders, infections, and inflammation. This review delves into the intricate interplay between glycosylation and protein conformation, with a specific focus on the profound impact of N-glycans on the selection of distinct protein conformations characterized by distinct interactomes-namely, protein assemblies-under normal and pathological conditions across various diseases. We begin by examining the spike protein of the SARS virus, illustrating how N-glycans regulate the infectivity of pathogenic agents. Subsequently, we utilize the prion protein and the chaperone glucose-regulated protein 94 as examples, exploring instances where N-glycosylation transforms physiological protein structures into disease-associated forms. Unraveling these connections provides valuable insights into potential therapeutic avenues and a deeper comprehension of the molecular intricacies that underlie disease conditions. This exploration of glycosylation's influence on protein conformation effectively bridges the gap between the glycome and disease, offering a comprehensive perspective on the therapeutic implications of targeting conformational mutants and their pathologic assemblies in various diseases. The goal is to unravel the nuances of these post-translational modifications, shedding light on how they contribute to the intricate interplay between protein conformation, assembly, and disease.


Assuntos
Príons , Processamento de Proteína Pós-Traducional , Glicosilação , Polissacarídeos/química , Conformação Proteica , Príons/metabolismo
9.
ACS Chem Neurosci ; 15(7): 1533-1547, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507813

RESUMO

Neuroinflammation plays a crucial role in the development of neurodegenerative protein misfolding disorders. This category of progressive diseases includes, but is not limited to, Alzheimer's disease, Parkinson's disease, and prion diseases. Shared pathogenesis involves the accumulation of misfolded proteins, chronic neuroinflammation, and synaptic dysfunction, ultimately leading to irreversible neuronal loss, measurable cognitive deficits, and death. Presently, there are few to no effective treatments to halt the advancement of neurodegenerative diseases. We hypothesized that directly targeting neuroinflammation by downregulating the transcription factor, NF-κB, and the inflammasome protein, NLRP3, would be neuroprotective. To achieve this, we used a cocktail of RNA targeting therapeutics (SB_NI_112) shown to be brain-penetrant, nontoxic, and effective inhibitors of both NF-κB and NLRP3. We utilized a mouse-adapted prion strain as a model for neurodegenerative diseases to assess the aggregation of misfolded proteins, glial inflammation, neuronal loss, cognitive deficits, and lifespan. Prion-diseased mice were treated either intraperitoneally or intranasally with SB_NI_112. Behavioral and cognitive deficits were significantly protected by this combination of NF-κB and NLRP3 downregulators. Treatment reduced glial inflammation, protected against neuronal loss, prevented spongiotic change, rescued cognitive deficits, and significantly lengthened the lifespan of prion-diseased mice. We have identified a nontoxic, systemic pharmacologic that downregulates NF-κB and NLRP3, prevents neuronal death, and slows the progression of neurodegenerative diseases. Though mouse models do not always predict human patient success and the study was limited due to sample size and number of dosing methods utilized, these findings serve as a proof of principle for continued translation of the therapeutic SB_NI_112 for prion disease and other neurodegenerative diseases. Based on the success in a murine prion model, we will continue testing SB_NI_112 in a variety of neurodegenerative disease models, including Alzheimer's disease and Parkinson's disease.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Doenças Priônicas , Príons , Deficiências na Proteostase , Humanos , Camundongos , Animais , Doenças Neurodegenerativas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Doença de Alzheimer/metabolismo , Doenças Neuroinflamatórias , Regulação para Baixo , Doença de Parkinson/metabolismo , Neurônios/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Príons/metabolismo , Inflamação/metabolismo , Deficiências na Proteostase/tratamento farmacológico , Deficiências na Proteostase/metabolismo
10.
Cell Rep ; 43(3): 113969, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483901

RESUMO

In this interview with Zhentao Zhang, we discuss his research focusing on the molecular mechanisms underlying the aggregation of prion-like proteins in neurodegenerative diseases and spotlight his recent work in Cell Reports that shows that a yeast prion protein interacts with tau and facilitates its aggregation.


Assuntos
Doenças Neurodegenerativas , Príons , Humanos , Príons/metabolismo , Proteínas Priônicas , Doenças Neurodegenerativas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas tau/metabolismo
11.
Sci Rep ; 14(1): 6294, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491063

RESUMO

Real-time quaking-induced conversion assay (RT-QuIC) exploits templating activity of pathogenic prion protein for ultrasensitive detection of prions. We have utilized second generation RT-QuIC assay to analyze matching post-mortem cerebrospinal fluid and skin samples of 38 prion disease patients and of 30 deceased neurological controls. The analysis of cerebrospinal fluid samples led to 100% sensitivity and 100% specificity, but some samples had to be diluted before the analysis to alleviate the effect of present RT-QuIC inhibitors. The analysis of the corresponding skin samples provided 89.5% sensitivity and 100% specificity. The median seeding dose present in the skin was one order of magnitude higher than in the cerebrospinal fluid, despite the overall fluorescent signal of the skin samples was comparatively lower. Our data support the use of post-mortem cerebrospinal fluid for confirmation of prion disease diagnosis and encourage further studies of the potential of skin biopsy samples for intra-vitam prion diseases´ diagnostics.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Príons/metabolismo , Doenças Priônicas/diagnóstico , Pele/metabolismo , Proteínas Priônicas , Bioensaio , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquidiano
12.
Prion ; 18(1): 28-39, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38512820

RESUMO

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are multifunctional proteins with integral roles in RNA metabolism and the regulation of alternative splicing. These proteins typically contain prion-like domains of low complexity (PrLDs or LCDs) that govern their assembly into either functional or pathological amyloid fibrils. To date, over 60 mutations targeting the LCDs of hnRNPs have been identified and associated with a spectrum of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD). The cryo-EM structures of pathological and functional fibrils formed by different hnRNPs have been recently elucidated, including those of hnRNPA1, hnRNPA2, hnRNPDL-2, TDP-43, and FUS. In this review, we discuss the structural features of these amyloid assemblies, placing particular emphasis on scrutinizing the impact of prevalent disease-associated mutations mapping within their LCDs. By performing systematic energy calculations, we reveal a prevailing trend of destabilizing effects induced by these mutations in the amyloid structure, challenging the traditionally assumed correlation between pathogenicity and amyloidogenic propensity. Understanding the molecular basis of this discrepancy might provide insights for developing targeted therapeutic strategies to combat hnRNP-associated diseases.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Príons , Humanos , Príons/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Mutação
13.
BMC Neurol ; 24(1): 92, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468258

RESUMO

BACKGROUND: Human prion diseases (HPDs) are fatal neurodegenerative disorders characterized by abnormal prion proteins (PrPSc). However, the detection of prion seeding activity in patients with high sensitivity remains challenging. Even though real-time quaking-induced conversion (RT-QuIC) assay is suitable for detecting prion seeding activity in a variety of specimens, it shows lower accuracy when whole blood, blood plasma, and blood-contaminated tissue samples are used. In this study, we developed a novel technology for the in vitro amplification of abnormal prion proteins in HPD to the end of enabling their detection with high sensitivity known as the enhanced quaking-induced conversion (eQuIC) assay. METHODS: Three antibodies were used to develop the novel eQUIC method. Thereafter, SD50 seed activity was analyzed using brain tissue samples from patients with prion disease using the conventional RT-QUIC assay and the novel eQUIC assay. In addition, blood samples from six patients with solitary prion disease were analyzed using the novel eQuIC assay. RESULTS: The eQuIC assay, involving the use of three types of human monoclonal antibodies, showed approximately 1000-fold higher sensitivity than the original RT-QuIC assay. However, when this assay was used to analyze blood samples from six patients with sporadic human prion disease, no prion activity was detected. CONCLUSION: The detection of prion seeding activity in blood samples from patients with sporadic prion disease remains challenging. Thus, the development of alternative methods other than RT-QuIC and eQuIC will be necessary for future research.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Príons/metabolismo , Proteínas Priônicas , Doenças Priônicas/diagnóstico , Doenças Priônicas/metabolismo , Encéfalo/metabolismo , Plasma/metabolismo , Síndrome de Creutzfeldt-Jakob/diagnóstico
14.
Nat Commun ; 15(1): 2112, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459071

RESUMO

Prion diseases are a group of rapidly progressing neurodegenerative disorders caused by the misfolding of the endogenous prion protein (PrPC) into a pathogenic form (PrPSc). This process, despite being the central event underlying these disorders, remains largely unknown at a molecular level, precluding the prediction of new potential outbreaks or interspecies transmission incidents. In this work, we present a method to generate bona fide recombinant prions de novo, allowing a comprehensive analysis of protein misfolding across a wide range of prion proteins from mammalian species. We study more than 380 different prion proteins from mammals and classify them according to their spontaneous misfolding propensity and their conformational variability. This study aims to address fundamental questions in the prion research field such as defining infectivity determinants, interspecies transmission barriers or the structural influence of specific amino acids and provide invaluable information for future diagnosis and therapy applications.


Assuntos
Doenças Priônicas , Príons , Animais , Príons/metabolismo , Proteínas Priônicas/genética , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Mamíferos/metabolismo , Dobramento de Proteína
15.
PLoS One ; 19(2): e0299038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394122

RESUMO

OBJECTIVE: Neurofilament light chain (Nf-L) has been used to detect neuroaxonal damage in the brain caused by physical injury or disease. The purpose of this study was to determine if serum Nf-L could be used as a biomarker for pre-symptomatic detection of scrapie in sheep. METHODS: Four sheep with prion protein genotype AVQQ were intranasally inoculated with the classical scrapie strain x124. Blood was collected every 4 weeks until 44 weeks post-inoculation, at which point weekly collection commenced. Serum was analyzed using single molecule array (Quanterix SR-X) to evaluate Nf-L concentrations. RESULTS: Scrapie was confirmed in each sheep by testing homogenized brainstem at the level of the obex with a commercially available enzyme immunoassay. Increased serum Nf-L concentrations were identified above the determined cutoff during the last tenth of the respective incubation period for each sheep. Throughout the time course study, PrPSc accumulation was not detected antemortem by immunohistochemistry in rectal tissue at any timepoint for any sheep. RT-QuIC results were inconsistently positive throughout the timepoints tested for each sheep; however, each sheep had at least one timepoint detected positive. When assessing serum Nf-L utility using receiver operator characteristic curves against different clinical parameters, such as asymptomatic and symptomatic (pruritus or neurologic signs), results showed that Nf-L was most useful at being an indicator of disease only late in disease progression when neurologic signs were present. CONCLUSION: Serum Nf-L concentrations in the cohort of sheep increased as disease progressed; however, serum Nf-L did not increase during the presymptomatic window. The levels increased substantially throughout the final 10% of the animals' scrapie incubation period when other clinical signs were present. Serum Nf-L is not a reliable biomarker for pre-clinical detection of scrapie.


Assuntos
Príons , Scrapie , Humanos , Ovinos , Animais , Scrapie/genética , Proteínas PrPSc/metabolismo , Filamentos Intermediários/metabolismo , Príons/metabolismo , Encéfalo/metabolismo , Biomarcadores
16.
Neuropathol Appl Neurobiol ; 50(1): e12963, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353056

RESUMO

AIM: CH1641 was discovered in 1970 as a scrapie isolate that was unlike all other classical strains of scrapie isolated so far. We performed bio-assays of CH1641 in mice in order to further characterise this specific isolate. METHODS: We inoculated the original CH1641 isolate into ovine and bovine prion protein (PrP) transgenic mice as well as wild-type mice. In addition, we performed cross- and back passages between the various mouse lines to examine if one identical prion strain was isolated in all mouse lines or whether multiple prion strains exist in CH1641. RESULTS: We report the first successful transmission of CH1641 to wild-type RIII mice and via RIII mice to wild-type VM mice. Unexpectedly, analysis of the protease-resistant prion protein (PrPres ) in wild-type mice showed a classical scrapie banding pattern differing from the banding pattern of the original CH1641 isolate. Cross- and back passages of CH1641 between the various mouse lines confirmed that the same prion strain had been isolated in all mouse lines. CONCLUSIONS: The CH1641 isolate consists of a single prion strain but its molecular banding pattern of PrPres differs between wild-type mice and PrP transgenic mice. Consequently, molecular banding patterns of PrPres should be used with caution in strain typing since they do not solely depend on the properties of the prion strain but also on the host prion protein.


Assuntos
Príons , Scrapie , Camundongos , Animais , Bovinos , Ovinos , Príons/metabolismo , Scrapie/metabolismo , Proteínas Priônicas/genética , Proteínas PrPSc/metabolismo , Camundongos Transgênicos
17.
Nat Commun ; 15(1): 1168, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326345

RESUMO

Prion-like domains (PLDs) are low-complexity protein sequences enriched within nucleic acid-binding proteins including those involved in transcription and RNA processing. PLDs of FUS and EWSR1 play key roles in recruiting chromatin remodeler mammalian SWI/SNF (mSWI/SNF) complex to oncogenic FET fusion protein condensates. Here, we show that disordered low-complexity domains of multiple SWI/SNF subunits are prion-like with a strong propensity to undergo intracellular phase separation. These PLDs engage in sequence-specific heterotypic interactions with the PLD of FUS in the dilute phase at sub-saturation conditions, leading to the formation of PLD co-condensates. In the dense phase, homotypic and heterotypic PLD interactions are highly cooperative, resulting in the co-mixing of individual PLD phases and forming spatially homogeneous condensates. Heterotypic PLD-mediated positive cooperativity in protein-protein interaction networks is likely to play key roles in the co-phase separation of mSWI/SNF complex with transcription factors containing homologous low-complexity domains.


Assuntos
Príons , Animais , Príons/metabolismo , Fatores de Transcrição/metabolismo , Cromatina , Mamíferos/genética , Montagem e Desmontagem da Cromatina
18.
J Phys Chem Lett ; 15(8): 2117-2122, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38363235

RESUMO

The misfolding of the α-helical cellular prion protein into a self-propagating ß-rich aggregated form is a key pathogenic event in fatal and transmissible neurodegenerative diseases collectively known as prion diseases. Herein, we utilize the interfacial properties of liquid crystals (LCs) to monitor the lipid-membrane-induced conformational switching of prion protein (PrP) into ß-rich amyloid fibrils. The lipid-induced conformational switching resulting in aggregation occurs at the nanomolar protein concentration and is primarily mediated by electrostatic interactions between PrP and lipid headgroups. Our LC-based methodology offers a potent and sensitive tool to detect and delineate molecular mechanisms of PrP misfolding mediated by lipid-protein interactions at the aqueous interface under physiological conditions.


Assuntos
Cristais Líquidos , Doenças Priônicas , Príons , Humanos , Proteínas Priônicas/química , Príons/química , Príons/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Peptídeos beta-Amiloides , Amiloide/química , Lipídeos , Dobramento de Proteína
19.
BMJ Case Rep ; 17(2)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388201

RESUMO

Variably protease-sensitive prionopathy (VPSPr) is a recently characterised rare subtype of sporadic prion disease, mainly affecting individuals with valine homozygosity at codon 129 in the prion protein gene, with only seven methionine homozygote cases reported to date. This case presents clinical, neuropathological and biochemical features of the eighth VPSPr case worldwide with methionine homozygosity at codon 129 and compares the features with the formerly presented cases.The patient, a woman in her 70s, presented with cognitive decline, impaired balance and frequent falls. Medical history and clinical presentation were suggestive of a rapidly progressive dementia disorder. MRI showed bilateral thalamic hyperintensity. Cerebrospinal fluid real-time quaking-induced conversion was negative, and the electroencephalogram was unremarkable. The diagnosis was established through post-mortem pathological examinations. VPSPr should be suspected in rapidly progressive dementia lacking typical features or paraclinical results of protein misfolding diseases.


Assuntos
Síndrome de Creutzfeldt-Jakob , Demência , Doenças Priônicas , Príons , Feminino , Humanos , Príons/genética , Príons/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Metionina/genética , Metionina/metabolismo , Homozigoto , Encéfalo/patologia , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Demência/genética , Racemetionina/metabolismo , Códon/genética , Códon/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia
20.
BMC Cancer ; 24(1): 199, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347462

RESUMO

BACKGROUND: Glioblastoma (GBM) is an aggressive brain tumor that exhibits resistance to current treatment, making the identification of novel therapeutic targets essential. In this context, cellular prion protein (PrPC) stands out as a potential candidate for new therapies. Encoded by the PRNP gene, PrPC can present increased expression levels in GBM, impacting cell proliferation, growth, migration, invasion and stemness. Nevertheless, the exact molecular mechanisms through which PRNP/PrPC modulates key aspects of GBM biology remain elusive. METHODS: To elucidate the implications of PRNP/PrPC in the biology of this cancer, we analyzed publicly available RNA sequencing (RNA-seq) data of patient-derived GBMs from four independent studies. First, we ranked samples profiled by bulk RNA-seq as PRNPhigh and PRNPlow and compared their transcriptomic landscape. Then, we analyzed PRNP+ and PRNP- GBM cells profiled by single-cell RNA-seq to further understand the molecular context within which PRNP/PrPC might function in this tumor. We explored an additional proteomics dataset, applying similar comparative approaches, to corroborate our findings. RESULTS: Functional profiling revealed that vesicular dynamics signatures are strongly correlated with PRNP/PrPC levels in GBM. We found a panel of 73 genes, enriched in vesicle-related pathways, whose expression levels are increased in PRNPhigh/PRNP+ cells across all RNA-seq datasets. Vesicle-associated genes, ANXA1, RAB31, DSTN and SYPL1, were found to be upregulated in vitro in an in-house collection of patient-derived GBM. Moreover, proteome analysis of patient-derived samples reinforces the findings of enhanced vesicle biogenesis, processing and trafficking in PRNPhigh/PRNP+ GBM cells. CONCLUSIONS: Together, our findings shed light on a novel role for PrPC as a potential modulator of vesicle biology in GBM, which is pivotal for intercellular communication and cancer maintenance. We also introduce GBMdiscovery, a novel user-friendly tool that allows the investigation of specific genes in GBM biology.


Assuntos
Glioblastoma , Príons , Humanos , Expressão Gênica , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Proteínas rab de Ligação ao GTP/genética , Sinaptofisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...